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We consider the unsteady three-dimensional Kármán flow induced by the impulsive
rotation of an infinite rotating plane immersed in an incompressible viscous fluid
with a dilute suspension of small solid monodisperse spherical particles. The flow is
described in terms of a ‘dusty gas’ model, which treats the discrete phase (particles)
and the continuous phase (fluid) as two continua occupying the same space and
interacting through a Stokes drag mechanism. The model is extended to allow for a
local gravitational acceleration in a direction parallel to the axis of rotation, and is
valid for cases in which gravity acts either in the same direction as or in the opposite
direction to the Ekman axial flow induced by the rotation of the plane.

Analysis based on the theory of characteristics shows that the role of gravity is
crucial to the treatment of the discrete-phase equations, particularly in regard to the
appropriate boundary conditions to be applied at the solid surface. Other notable
features include the presence of an essential singularity in the solution when gravity
is absent; indeed this phenomenon may help to explain some of the difficulties
encountered in previous studies of this type. If the gravitational force is directed away
from the rotating surface, a number of other interesting features arise, including the
development of discontinuities in the particle distribution profiles, with corresponding
particle-free regions contained between the interface and the rotating boundary. These
‘shock’ features can be associated with a critical axial location in the boundary layer
at which a balance is achieved between Ekman suction induced by the rotating
boundary and the influence of gravitational effects acting to move particles away
from the boundary.

1. Introduction
The flow of a dispersed two-phase medium occurs in a large number of both

environmental and industrial/technological contexts. It would clearly be invaluable
to be able to model reliably the macroscopic behaviour of such flows, for example
of dust/ash particles in environmental flows or micron-scale particulate matter in
viscous fluids, such as contaminants in water treatment or efficiency-reducing particles
in machinery oils. Similarly, many chemical processes often rely on two-phase flows
involving the exposure of a large interfacial area through the use of dispersed particle
clouds. In many of these cases, the fluid containing the particle load is also rapidly
rotating, for example in separators, pumps and centrifuges. It is well known that
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the global dynamics of such rotating flows are often driven by the properties of the
contained three-dimensional boundary layers, which can lead to large-scale secondary
flows, see for example Benton & Clark (1974) or Duck & Foster (2001).

In this work we apply analytical and computational methods to make predictions
for complex particle-laden flows that can be subsequently tested experimentally. The
modelling approach is based on the view that each material can be described as a
continuum, occupying the same region in space. The significant feature of the model
is that each of the interspersed media that form the ‘mixture’ can interact with the
other through terms in the governing equations that correspond to inter-phase drag
forces, as quantified through an associated particle Taylor number. For discussions
of the theoretical approach to two-phase flows the reader is referred (for example)
to the articles of Marble (1970), Ishii (1975), Drew (1983), Osiptsov (1997), Ungarish
(1993), Jackson (1996), Zhang & Prosperetti (1997) and Hernández (2001).

The two phases to be considered here are a continuous fluid phase interspersed
with a discrete solid particulate phase. The particles are taken to be small enough and
of sufficient number to be treated as a continuum and allow concepts such as density
and velocity to have physical meaning. The class of flows that we emphasize is the
boundary layer induced above an infinite rotating plane immersed in an otherwise
stationary dilute particle suspension; the term ‘dilute’ is used to indicate a volume
fraction/particle concentration that is sufficiently small for the particle phase to be
non-colloidal. There are clearly a broad range of physical effects that may be brought
into a model of particle-laden flows; however, in this instance we introduce only the
simplest formulation. In particular, we shall consider only the dilute limit for a solid
monodisperse spherical particle phase. In doing so, we may formally neglect any
effects related to phase transitions, non-uniformity of viscosity or deposition/friction
at bounding surfaces and take the inter-phase momentum transfer to be due solely
to a Stokes drag term for the spherical particles. Similarly, we shall assume that the
particles are sufficiently large to ignore the effects of Brownian motion but sufficiently
small to neglect Saffman (1965) and Magnus forces; we also assume that thermal
effects and electrostatic forces are absent. The extension of the basic model to include
these more general effects can be considered at a later stage. For validity of the
two-phase model we shall require that the particles are much smaller than the natural
lengthscale, which in this instance is the boundary-layer thickness.

The choice of the Kármán problem as a benchmark for the two-phase model is
not only due to its inherent relevance to a range of applications, but also because
it is ‘exact’ within the framework of the fluid-phase equations and is fully three-
dimensional, thereby providing a stringent test (via relatively straightforward exper-
imentation) for predictions of the macroscopic theory.

Additional motivation for an examination of the Kármán problem for a dilute
suspension arises from its history in the literature. A first discussion of the problem
was provided by Zung (1969), who utilized a formulation of the general type described
by Marble (1970), but the analysis of Zung was controversial in some respects. A
later discussion of the same problem was provided by Ungarish & Greenspan (1983)
(hereafter referred to as UG), who identified some inconsistencies in the earlier
work of Zung. Amongst these, are that Zung implicitly assumed that the particle
concentration is constant across the boundary layer, and also that the numerical values
of the parameters used in the computations correspond physically to particles of size
comparable to the boundary layer (thereby being inconsistent with the assumptions
of the macroscopic model).

Although it is clear that the points raised in UG noted above are valid, their other
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objections to the analysis of Zung are less simply justified. In particular, there is
an objection raised with regard to the absence of both pressure gradient forces and
boundary conditions applied at the disk for the particle phase. Here we note that the
aforementioned pressure gradient terms for the particulate phase are not universally
adopted by all researchers in this field; however, their absence may be formalized
by an assumption of a dusty-gas model in which the particulate phase has a large
density relative to the surrounding fluid. Recent papers by Slater & Young (2001)
and Hernández (2001) utilize equations without a particle pressure gradient. The
inclusion of a particle viscosity may be an issue for general particle concentrations (if
a correspondingly self-consistent theory can be developed for such cases); however,
their inclusion in the dilute limit is also open to question. Nevertheless, even with the
inclusion of pressure forces and viscous terms in the discrete-phase equations (thereby
leading to essentially two coupled nonlinear Navier–Stokes-like systems) UG were
still unable to provide convincing numerical solutions of the steady-state equations.
In terms of the scaled boundary-layer coordinate, the domain over which a solution is
to be sought to the boundary-layer equations must be semi-infinite, although clearly
a truncation at some appropriate point is required in any numerical procedure.
However, UG noted that their computations required the (theoretically semi-infinite)
computational domain to be restricted to less than three non-dimensional boundary-
layer units. For such a restrictive choice of domain truncation, solutions that are
independent of the domain size were evidently not obtained. Further, difficulties at
the boundary were avoided by the ad hoc introduction of a small suction or by the
incorporation of a diffusive term in the continuity equation. We note that a subsequent
unsteady evolution of the UG two-phase system proved equally problematic in the
later work of Resnick (1990), in which the same ad hoc approach was required to
obtain physically relevant results.

The later analysis of Allaham & Peddieson (1993) reconsidered the UG two-phase
system of steady equations and discussed the features of the solution for a range of
arbitrarily imposed boundary conditions applied on the particle phase at the disk.
They consider two cases in particular, which correspond to no slip/penetration and
‘perfect’ slip/penetration conditions on the particulate phase. Allaham & Peddieson
point out that in the absence of a ‘viscosity’ in the particle equations (that is, in the
dusty-gas model), no solution could be found.

Hence, it appears that the question of what constitutes the proper model equations
for a flow such as this is not yet fully resolved. Indeed, in what appears to be work
done simultaneously, Jackson (1996) and Zhang & Prosperetti (1997) find that an
averaging process leads to a much richer set of equations than any investigators seem
to have used to date. The difficulty here, very well discussed by Jackson (1996), is that
the averaging process, just as in Reynolds averaging for turbulent flow, always ends
in the dilemma of closure of the system. So, it seems clear to us that an investigator
ought to use the simplest set of equations that captures the new and major physics
of the fluid–particle flow. That is the philosophy that underlies our approach in this
work.

Nonetheless, there remain some difficulties in the application of the two-phase
dusty-gas model to even the most simple of three-dimensional boundary-layer flows.
In this paper we provide further details of the unsteady Kármán problem in an
attempt to elucidate and resolve some of the difficulties that have been encountered
so far in the existing literature. Additionally we incorporate the effects of a local
gravitational acceleration into the model; as far as we are aware, such effects have
not been studied in previous work of this type. As we shall show, the inclusion of
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gravitational effects leads to some interesting effects and also helps to clarify the
gravity-free case.

The format of the paper is as follows. In § 2, we formulate the two-phase model
in the limit of a dilute suspension, giving details of the conditions applied at the
disk. In § 3, some flow properties at the disk surface are deduced. In § 4, the limiting
solutions for a large particle Taylor number are considered both with and without the
effects of gravity (an analysis of the short-time behaviour of the solutions is given in
Appendix B), and finally in § 5 we provide some conclusions and general discussion.

2. Formulation
The notional configuration under consideration here is depicted in figure 1. A

container of an incompressible fluid interspersed with a solid particulate phase is
spun up from a state of rest. In this initial work we consider only the dynamics of
the boundary layers that form on the upper and lower horizontal bounding surfaces,
neglecting the influence of the sidewalls, and seeking a radially self-similar flow
of von Kármán form. In terms of the physical situation illustrated by the figure,
we may expect such a solution to describe the flow response over an order-one
dimensionless timescale non-dimensionalized with respect to the angular frequency Ω.
These boundary layers are known to be the crucial driving mechanism for the spin-up
process, and (see for example Duck & Foster 2001) in the case of a single-phase
fluid, are fully developed within one rotation of the container. Over a much longer
dimensionless timescale of O(E−1/2), where E = ΩH2/ν � 1, based on the container
height H and kinematic viscosity ν, recirculation driven by these viscous layers will
significantly influence the interior flow.

In our theoretical model we therefore consider an (infinite) incompressible fluid
body, interspersed with a suspension of particles (of uniform size and density), above
a plane that is impulsively spun up from a state of rest. Since we consider our fluid to
be bounded by two horizontal planes, we shall in essence consider three broad classes
of problem. The three classes correspond to no gravitational influence, a gravitational
acceleration towards the boundary (e.g. for the lower boundary layer in figure 1) and
a gravitational acceleration away from the boundary (e.g. for the upper boundary
layer in figure 1). (This configuration should be considered as conceptual, rather than
precise, since the global flow will not be addressed; rather we consider each boundary
layer in isolation over a timescale for which the interior flow is unchanged.) As we
shall see below, these three cases will be distinguished as K = 0, K > 0 and K < 0
respectively, where K is a dimensionless parameter (defined precisely below) that
measures the relative importance of rotational and gravitational effects.

Assuming that the particle suspension is dilute, the continuity equations for the
fluid and the suspension are taken to be

∇ · u = 0,
∂α

∂t∗
+ ∇ · (αup) = 0, (2.1a, b)

where u is the velocity vector of the fluid component, up is the velocity vector of
the particle phase, α is the particle concentration of the particle phase and t∗ is a
dimensional time. The momentum equations for the two phases are taken to be

ρf
∂u

∂t∗
+ ρf(u · ∇)u+ ∇p = µ∇2u− F − ρfg, (2.2a)

ρpα
∂up

∂t∗
+ ρpα(up · ∇)up = F − ρpαg+ ρfαg, (2.2b)
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Figure 1. Configuration of a spin-up problem, showing a boundary layer under the top boundary,
for which K < 0; and one over the bottom boundary, for which K > 0.

where a buoyancy term has been included as well as the standard gravitational force.
In these equations, ρf and ρp denote the (constant) densities of the fluid and particle
phases respectively, whilst g is the local gravitational acceleration, which is taken to
be parallel to the axis of rotation of the infinite rotating plane. These equations are
the so-called ‘dusty-gas’ equations of many authors, and a discussion of their domain
of validity is given below.

Completion of these equations requires that the drag force per unit volume F ,
between the two species be specified. In our case, following previous studies of this
type, we assume small spherical particles, and so we apply the Stokes drag formula

F =
9µ

2a2
α(u− up), (2.3)

where a is a particle diameter. This Stokes drag formula assumes that α is sufficiently
small for the particles to be non-interacting, and consistent with this assumption
of negligible particle–particle collisions, there is no ‘viscosity’ in the particle phase
described by equation (2.2b).

Two fluid/particle parameters are crucial to the modelling that follows. The par-
ameter γ ≡ ρp/ρf obviously measures the relative densities of the particle material
and the fluid. The ratio of the Stokes drag term in (2.2a) to the fluid inertia is αβ,
where β ≡ 9ν/(2Ωa2) is an inverse particle Taylor number. (Here, ν = µ/ρf is the
kinematic viscosity for the fluid.) For small particles, β is typically very large.

2.1. Parametric restrictions

Equations (2.1)–(2.2b) are not the most general two-fluid equations for such a flow.
Zhang & Prosperetti (1997) and Jackson (1996) indicate that several additional terms,
including viscous stresses and ‘Reynolds stresses’ may, in general, be present. The
question of just what equations are in fact appropriate is related to the relative orders
of α, and parameters γ and β.

To be more specific, the more general form of (2.1a) is given by Jackson (1996) or
Ungarish (1993) (for example). However, we assume that α is so small that it may be
neglected compared to 1 in the first term, and also that α|up| � |u| everywhere in the
flow, which permits the use of (2.1). This assumption must be checked a posteriori.
We return to this in § 2.4. Further, in equation (2.2a), a factor (1 − α) multiplies
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the pressure gradient term and the inertia term. Again, consistent with the small-α
requirement for a dilute medium, all of those factors have been replaced by 1.

Finally, in equation (2.2b), all references noted above and in the introduction
indicate the presence of a term

1

γ
∇p.

Provided that γ is sufficiently large, this effect can be neglected as well. Again, we make
an a posteriori check in § 2.4. In addition, consistent with the small-α requirement, the
viscosity in (2.2a) does not have the Einstein correction.

We have retained the Stokes drag in (2.2a) and (2.2b) even though it has an
α multiplier – this is self-consistent only if its multiplier, β, is large – a requirement
which we now invoke. Having already required that the ratio γ ≡ ρp/ρf be large,
these restrictions together lead to the equation set (2.1)–(2.2b) for a ‘dusty-gas’ (Marble
1970). This same set of approximations has been widely used in the literature, most
recently, for example, in the papers by Slater & Young (2001) and Hernández (2001).
The assumptions are further discussed at a more fundamental level by Jackson (1996).
Again, we return to a reassessment of this matter in § 2.4.

In summary, then, the parametric restrictions to this point are

α� 1, β � 1, γ � 1. (2.4)

Typically, in multi-parameter problems of this sort, certain more restrictive relative
orderings among α, β and γ can be expected to develop; such more stringent restric-
tions will be noted as they arise in the course of the analysis. However, for the sake
of completeness, we note here that all of what we do here also requires

β � γ. (2.5)

Furthermore, asymptotic analysis of the no-gravity solution structure in § 4.1.1 leads
to a yet more severe restriction for that case, given in (4.18), which is

γ2 � β � γ � 1 for K = 0. (2.6)

2.2. Self-similar equations

We consider a cylindrical polar coordinate system (r, θ, z) centred on the axis of
rotation with the plane z = 0 being the impermeable boundary. The boundary layer
on the lower surface is assumed to develop in time according to the self-similar
structure

u = (û, v̂, ŵ)T , up = (ûp, v̂p, ŵp)
T , (2.7)

where

û = Ωru(ζ, t), v̂ = Ωrv(ζ, t), ŵ = (νΩ)1/2w(ζ, t), (2.8)

ûp = Ωrup(ζ, t), v̂p = Ωrvp(ζ, t), ŵp = (νΩ)1/2wp(ζ, t), (2.9)

ζ is the ‘boundary-layer’† variable ζ ≡ z(Ω/ν)1/2, and the kinematic viscosity is based
on the fluid density as above. Non-dimensional time is taken to be t = Ωt∗ and the
vector r is in the radial direction. Note that the particle concentration, α, is also a
function of ζ and t.

† Although there is no formal boundary-layer approximation required for an infinite geometry,
we shall still refer to the region as the boundary layer for convenience.
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Substitution of these quantities into equations (2.1)–(2.2b) leads to

u̇+ wu′ + u2 − v2 = u′′ − βα(u− up), (2.10)

v̇ + wv′ + 2uv = v′′ − βα(v − vp), (2.11)

u̇p + wpu
′
p + u2

p − v2
p =

β

γ
(u− up), (2.12)

v̇p + wpv
′
p + 2upvp =

β

γ
(v − vp), (2.13)

2u+ w′ = 0, (2.14)

α̇+ wpα
′ + α(2up + w′p) = 0, (2.15)

where the prime denotes differentiation with respect to ζ and the dot notation denotes
differentiation with respect to non-dimensional time. The vertical component of (2.2b)
remains coupled to the above system and must be incorporated, namely,

ẇp + wpw
′
p =

β

γ
(w − wp)−K. (2.16)

It is the assumption that γ � 1 that leads to (2.16), with the terms shown dominating
the neglected pressure gradient term. Indeed, this equation plays a crucial role in
our analysis, insofar as it closes our model, effectively providing an explicit means to

determine the particle velocity component wp. The quantity K≡ (1− γ−1)g/
√
νΩ3 is

a gravitational parameter that measures the net buoyancy in the flow, which is zero
in the absence of gravity. Since γ is large, the buoyancy force per se is negligible, and
all that matters is gravity acting on the particles themselves. The vertical component
of the fluid momentum equation (2.2a) takes its usual form in boundary-layer theory,
∂p/∂ζ = 0, leading then to no radial pressure gradient in this problem.

If we repeat the above analysis for the boundary layer under the top surface,
writing instead ζ = (h − z)(Ω/ν)1/2, similar equations develop, which reduce to the
set given above under the transformation (w, wp,K) → (−w,−wp,−K). Therefore,
studying (2.10)–(2.16) as written corresponds to the boundary layer on the lower wall
for K > 0, and to than on the upper wall for K < 0. What is significant, from the
point of view of the dynamics of the boundary layer, is that in one case the particle
gravitational force is directed toward the wall (K > 0), and in the other case, away
from the wall (K < 0).

In this paper we will explore the dependence of the solutions on the various
parameters, γ, β and K. Note that β1/2 ∼ (ν/Ω)1/2/a is the ratio of the boundary-
layer thickness to the particle size, which clearly must be large to support a continuum
hypothesis, thus lending support to one of the restrictions in (2.4). The quantity K
could be numerically small in some industrial settings, where the rotation rate is
high; in the context of many laboratory experiments however, the rotation rates are
sufficiently small for |K| to be large.

2.3. Boundary and initial conditions

For the ‘dusty-gas’ boundary layer under study here, we suppose that the fluid satisfies
impermeability and no slip, but that the particles can be allowed to slip at the surface
(there being no ‘particle viscosity’), hence we have the boundary conditions

u = w = 0, v = 1 at ζ = 0, (2.17)
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and

u, v, up, vp → 0 as ζ →∞, (2.18)

together with the condition that the particle concentration matches to that in the
interior,

α→ αe as ζ →∞. (2.19)

The proper condition to be imposed on wp at the boundary is not immediately
apparent. At first, it would appear that a non-penetration condition,

wp = 0 at ζ = 0, (2.20)

is appropriate, and this constraint is in fact often used in the literature. However, it is
evident from (2.16) that if wp > 0 near the wall, then the variable ζ is time-like (that
is, the ζ, t characteristics slope away from the wall), and it is certainly mathematically
correct to set wp to zero, or indeed any value, at the wall. It is conceivable that a
model could be constructed to incorporate the particle–wall interactions, for example
simulating bouncing and including coefficients of restitution etc., but this is considered
to be outside the scope of the present paper. Indeed, great difficulties can arise in
such circumstances due to the possibility of crossing particle trajectories; this and
other issues are discussed by Osiptsov (1997) and Slater & Young (2001).

If wp < 0 near the wall, then the ζ, t characteristics of (2.16) slope toward the wall,
and so wp cannot properly be specified there, but must rather be specified elsewhere,
for example at the edge of the layer. We return to this question subsequently, since this
has important implications for both the physics and computations in some parameter
regimes.

In essence, the physical interpretation is simple. If there is a net axial flow of
particles towards the boundary, the properties of this particle phase at the boundary
are obtained as part of the solution procedure and cannot in general be specified.
For the converse case, if the net transport is away from the boundary, one is free to
impose any conditions at the wall and the influence of such conditions propagates
outwards through the boundary layer. The somewhat more complex situation for
which the axial transport of particles changes at a location within the boundary layer
will be discussed later.

The question of initial conditions ought to reflect what is physically realistic for a
laboratory investigation, and so we consider an initial state of uniform ‘settling’ of
the particles under gravity, namely

α = αi(ζ), wp = −γK/β at t = 0. (2.21)

Generally we take αi(ζ) = αe uniform, unless otherwise stated. The fluid velocity
components are all taken to be zero at t = 0, corresponding to spin-up of the fluid
from rest.

2.4. Further comments on the dusty-gas approximation

We set out above an approximate set of equations under the assumptions discussed
in § 2.1. We here return to those approximations for further analysis for the special
case of this self-similar boundary layer.

The pressure term

As noted in the discussion in § 2.2, the leading-order pressure gradient across the
boundary layer is zero. There is, of course, a smaller pressure change, and writing the
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reduced pressure as p = ρfνΩp̂ and inserting into the vertical component of the fluid
momentum equation (2.2a) gives the following equation:

ẇ + ww′ + p̂′ = w′′ − αβ(w − wp). (2.22)

Similarly, substituting into the vertical component of (2.2b), whilst retaining the
(previously neglected) pressure term gives the equation

ẇp + wpw
′
p +

1

γ
p̂′ = −K +

β

γ
(w − wp). (2.23)

Elimination of p̂′ from these two equations gives, after again neglecting α when it
occurs in the combination (1 + α),

ẇp + wpw
′
p +

β

γ
wp =

1

γ
(ẇ + ww′ − w′′) +

β

γ
w −K. (2.24)

This equation suggests that relatively complicated asymptotic expansions exist for the
vertical velocity components, in the case K≡ 0. The expansions are(

w
wp

)
=

(
w0

wp0

)
+
γ

β

(
w1

wp1

)
+ · · ·+ 1

γ

(
wγ
wpγ

)
+ · · · , (2.25)

where the form of the series is governed by the constraint (2.6). The gauge functions
beyond the first two terms are dependent on the relative orders of β and γ, even
under (2.6). Superficially it may appear that the solutions we have obtained for the
leading-order terms in this series are not uniformly valid to the wall, specifically the
γ−1 term; however, a careful inspection of the heirarchy of equations generated by
the series reveals that the γ−1 term is dependent on those terms that precede it in the
asymptotic series. Thus, beyond the first two terms, it is difficult to say much about
the higher-order terms in the series, and the first two terms are those that arise from
the subset equation (2.16). In fact, neglect of the γ−1 term is self-consistent. It may
be that there is a higher-order non-uniformity, but it would be ill-advised to draw
such a conclusion based on arguments from the (w, wp) equations only, since such a
complex asymptotic expansion (2.25) must be inserted into the complete equations,
and would require retaining terms already neglected, as noted.

On the other hand, for K 6= 0, one can observe from this equation that retention
of the gravity term requires its largeness compared to γ−1, so γ � 1 is not sufficient
in this case, but rather

γ �K−1 for K 6= 0. (2.26)

Continuity

The approximate continuity equation (2.14) results from what may be regarded as a
regular perturbation in a small parameter measuring the magnitude of α (for example
αe), although (more precisely) the procedure adopted is much like a Boussinesq
approximation: we neglect α everywhere except when it is multiplied by the (assumed
large) β, and we neglect γ−1 except when it is multiplied by β. That is a self-consistent
approximation, provided that (2.26) is satisfied in the presence of gravitational force.

3. Numerical solution
The numerical method is based on a Crank–Nicolson scheme temporally, standard

second-order central differencing in ζ, with Newton iteration to handle the inherent
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nonlinearity of the system. The net result is a banded algebraic system (at each
timestep, at each iteration level), whose structure is fully exploited in the solution
procedure. Our early numerical investigations identified some subtleties with regard
to the appropriate formulation of boundary conditions for the particle-phase velocity
components and α. However, in the light of the preceding comments regarding the
ζ − t characteristics near the wall, and a more detailed analysis to be presented in
subsequent sections, we are able to fully justify the appropriate choices of boundary
condition used in the numerical procedure.

For a boundary layer in which K > 0 (see figure 1), since (as noted earlier) the
characteristics of the particle equations are directed towards ζ = 0, it is therefore en-
tirely appropriate to specify particle-phase flow quantities as ζ →∞, and to determine
these quantities on the disk surface as part of the solution procedure. This procedure
leads to fully consistent numerical solutions.

In the case that K < 0 (see figure 1) the characteristics of the particle-phase equa-
tions are generally directed outwards, away from the boundary at ζ = 0, suggesting
the appropriate (numerical) procedure is to specify up, vp, wp and α on the disk surface,
whilst as ζ →∞, to retain the use of (2.12), (2.13), (2.15), (2.16) but impose a uniform
behaviour in the far field, with ∂up/∂ζ = ∂vp/∂ζ = ∂wp/∂ζ = ∂α/∂ζ = 0 as ζ → ∞;
again, this procedure leads to consistent numerical solutions. In the no-gravity case
(K = 0) either of the aforementioned procedures was seen to yield consistent nu-
merical results (and indeed the two approaches produce solutions that agree in this
case).

We begin the presentation of the numerical results by noting that, without loss
of generality, we may perform the computations for varying αe, β and K with γ
fixed, since the crucial parameters are in fact αγ, β/γ and K. Results of the time
integration of the initial-boundary-value problem formed by (2.10)–(2.16) are shown
in figures 2–8, and are described next.

Flow with negligible gravity: K≈ 0

In figures 2 and 3 we present examples of the radial fluid and particle velocity
components with increasing time for β/γ = 10 and αeγ = 0.1. Figure 2 shows a slip
velocity for the particle phase at the surface of the disk, which is in agreement with
the results of Appendix A, detailing the time evolution of surface conditions. Figure 3
shows profiles of the particle concentration for the same time evolution, showing
the development of a ‘low-α’ region immediately adjacent to the disk. This may be
expected on physical grounds since the disk acts like a centrifugal fan, ejecting fluid
radially outwards with a corresponding axial mass replacement. However, impermea-
bility of the disk and the absence of gravity suggests that a replacement mechanism
for the particle phase does not exist near to the disk. The exponential behaviour of
the particle concentration at the surface is again in agreement with the analysis of
Appendix A. It is interesting to note the behaviour near the wall, where it appears
that α → 0 over a finite zone. At the maximum time shown, t = 20, the velocity
components are essentially steady, but α in the near-wall region is still noticeably
evolving toward zero.

The velocity profiles shown here are, at first sight, qualitatively similar to those
shown in Ungarish (1993) as computed from a broader class of model equations by
Resnick (1990). The volume-fraction profile is also similar, with the ‘width’ ζ ∼ 1 for
both. However, we must note that differences still exist. For example, the profiles of
figure 5.4.3 in Ungarish (1993) for the difference in axial velocity between the two
phases change sign, leading to a region of the flow in which particles move against the
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Figure 2. Profiles of the fluid and particle-phase radial (dimensionless) velocity for αeγ = 0.1,
β/γ = 10 and K = 0 at t = 0.5, 1, . . . , 20.

dominant Ekman transport; this is in qualitative contrast to our results of figure 6
in the large-time limit. We may further note that the unsteady results described by
Ungarish (1993) still use the ad hoc suction boundary condition to avoid difficulties
with application of the no-penetration condition; the same review also notes that the
unsteady numerics lead to the volume fraction reaching ‘non-physical values’ in the
large-time limit, again in contrast to our own theory.

Figure 4 shows the evolution of the particle velocity components at the wall, for
β/γ = 10. Clearly, the radial slip velocity of the particle phase, upo ≡ up(ζ = 0, t) (the
additional zero subscript here denotes an evaluation of the quantity at the disk surface,
ζ = 0) approaches a positive limiting value, as does vpo ≡ vp(ζ = 0, t), consistent with
the concepts of the phase-plane analysis of Appendix A. In figure 5, it is evident that,
on a much longer timescale (because upo is small), the particle concentration α → 0
at the disk surface. This is again in excellent quantitative agreement with the results
of the analysis of Appendix A, in particular with (A 13).
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Figure 4. Horizontal velocity components at the wall for αeγ = 0.1, β/γ = 10 and K = 0.

It is immediately evident from (A 3) and (A 6) that at larger values of β there is
a strong scale separation. Provided that (A 7) is not satisfied, so that a finite-time
singularity does not arise, then Λ = w′p(ζ = 0)→ 0 on a very short scale, a time
of O(γ/β). However, the particle concentration at the wall, αo ≡ α(ζ = 0, t), decays
exponentially but very slowly, on a scale of order β/γ. In fact, for large β, the
approximate solution of (A 3) is

αo ∼ αie−2γt/β , (3.1)

since, from (A 9), the approximate value of upo for large β is γ/β.
In figure 6, we present details for a case at higher particle Taylor number, β/γ = 50,

with an interior particle concentration satisfying αeγ = 0.01 and no gravitational effects
(K = 0). The figure shows profiles of relative axial velocity between the two phases.
As seen explicitly from the small-time analysis of Appendix A, far from the disk
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surface the axial components differ initially; however, in the large-time limit there is
little relative axial velocity between the two phases in this zone.

It is well known that the sudden rotation of a boundary in an otherwise stationary
fluid produces a resultant flow in the manner of a centrifugal fan, with a radial
transport of fluid and concomitant axial flow towards the rotating boundary required
to satisfy mass conservation. The relative directions of the gravitational forcing and
this induced axial flow (or Ekman mass transport, as it is commonly referred to) is
crucial for the qualitative behaviour of the flow.

Gravitational acceleration directed towards the boundary: K > 0

In figures 7 and 8 we show results that explore the case K > 0, that is when the
influence of a gravitational forcing is directed in the same sense as the Ekman mass
transport. In figure 7, the behaviour of the particle concentration at the wall is shown
for β/γ = 50, αeγ = 0.01, for varying K = 0, 10, 50, 100. In general, for K > 0,
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gravity provides a replacement mechanism for particles in the near-wall region, and
typically the particle concentration at the wall is seen to reduce slightly to a minimum
(due to the induced radial outflow subsequent to rotation of the boundary) before
increasing again towards an eventual steady state. The timescale for the attainment
of a steady behaviour is seen to be of the order of one rotation of the tank, and
the scale separation observed in the absence of gravity (noted above) no longer
holds.

We note that in the case K > 0 we have been able to solve the steady governing
equations via a numerical approach directly (rather than as the large-time solution
in an initial-value formulation); the states obtained from this solution procedure
coincide with those obtained in the large-time limit of the unsteady calculations, as
expected. However, in the limit K→ 0+ it became increasingly difficult to obtain
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converged numerical solutions to the steady equations. Such difficulties have been
encountered (but not resolved) by previous authors seeking numerical solutions to the
steady equations in the absence of gravity, for example by UG. The property of the
solution structure that leads to these difficulties (an essential singularity) for K = 0
will be described in some detail subsequently (in § 4), by considering the asymptotic
limit of β � 1.

Gravitational acceleration directed away from the boundary: K < 0

In this case it may be anticipated that there exists the possibility of a qualita-
tively different flow evolution caused by the introduction of two competing effects.
Clearly, the rotation of the disk induces an axial (Ekman) transport in the fluid as
in the classical problem of von Kármán. However, there is an opposing influence
of gravitational effects exerted on the particles that causes a uniform motion in
the absence of any fluid motion. It is possible that the two effects of the Stokes
drag induced by the non-uniform Ekman suction in the boundary layer and the
uniform gravitational forcing may balance at a critical location within the layer.
At ζ locations beneath this critical location, gravitational effects dominate and par-
ticles will move away from the boundary, whilst at ζ locations above this level, drag
forces dominate and the Ekman mass transport is sufficient to induce a motion
towards the boundary. Clearly, there is still radial transport since the flow is three-
dimensional, but particles can be replenished from the interior flow provided that
αe 6= 0.

The imposition of the initial conditions implemented above must lead, inevitably,
to discontinuities in the particle concentration function (changing from α(ζ = 0,
t = 0−) = αe at the wall, to, instantaneously α(ζ = 0, t = 0+) = 0), which leads to
the associated difficulties with computations of this type. Instead (and this in many
respects turns out to be more revealing) we decided to perform K < 0 computations
with an initial continuous, but non-uniform, spatial distribution of particles that are
moving uniformly under gravity at a terminal velocity with wp = −γK/β, an example
of which is shown in figure 9. As in the preceding calculations, at time t = 0 the disk
is set to rotate at a unit non-dimensional angular frequency. (These initial conditions
mirror what one may expect to achieve in a straightforward laboratory investigation.)
As can be observed from the figure, the large-time structure includes the development
of a shock-like profile in the distribution of the particle concentration. This developing
discontinuity bounds a particle-free region (‘below’) and is located at a critical point
at which there is no axial flow (wp = 0) of the discrete phase. Examination of the
other velocity components indicates that a continuous distribution is obtained for
u, v, w, up, vp and wp.

We note that the development of a discontinuity in the particle concentration relies
upon striking a balance between drag forces exerted by the axial Ekman transport
and gravitational effects. Therefore, if the influence of gravity is sufficiently strong (i.e.
K < Kcrit < 0) then Ekman transport (and associated Stokes drag exerted on the
particle phase) can be too weak to produce a shock and any distribution of particles
ultimately rises away from the disk to infinity. In such a case, a steady-state cannot
exist. This is precisely what occurs in the large-negative-K asymptotic solution given
below in § 4.3.1.

Development of such shocks has been mentioned by a variety of investigators
previously, as noted by UG, Ungarish (1993), and also in a recent interesting paper
by Mang, Ungarish & Schaflinger (2001).
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4. Solution behaviour for large β
As noted above, the system (2.1)–(2.2b) is formally valid only in the limit of β →∞

(corresponding to particle dimensions significantly smaller than the boundary-layer
thickness); fortunately, in this limit some asymptotic progress is possible, and this
is the focus of our attention in this section. This asymptotic work also serves to
reinforce some of the conclusions gleaned from the previous section.

4.1. Negligible gravity: K≈ 0

For large β, we can write the solution for the velocity and particle concentration as
an asymptotic series, although in this limit the description in some cases requires very
thin wall layers. Clearly a requirement on our continuum formulation for dusty-gas
flow is that any lengthscales (∆ζ) associated with the solution be large compared to
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the particle size, which for the purposes of this section will require

∆ζ � β−1/2. (4.1)

We shall find that for some of the asymptotic results presented below, (4.1) imposes
more stringent conditions than have already been noted in (2.4); for now, all that we
need to impose is

β � γ, β � 1. (4.2)

The asymptotic expansion for solutions of (2.10)–(2.16) for large β then proceeds as

α =
1

γ
α̂+ · · · , (4.3)

u = u(0) +
γ

β
u(1) + · · · , up = u(0) +

γ

β
u(1)
p + · · · , α̂ = α̂(0) +

γ

β
α̂(1) + · · · , (4.4)

where, crucially, we note that to leading order the velocity of the fluid particles
is equal to that of the fluid. This expansion and leading-order identity of the two
velocity vectors has also been performed by UG. Substitution into (2.10)–(2.13) gives
the equations

u̇(0) + w(0)u(0)′ + u(0)2 − v(0)2 = u(0)′′ − α̂(0)(u(1) − u(1)
p ), (4.5)

v̇(0) + w(0)v(0)′ + 2u(0)v(0) = v(0)′′ − α̂(0)(v(1) − v(1)
p ), (4.6)

u̇(0) + w(0)u(0)′ + u(0)2 − v(0)2 = (u(1) − u(1)
p ), (4.7)

v̇(0) + w(0)v(0)′ + 2u(0)v(0) = (v(1) − v(1)
p ), (4.8)

and (2.14)–(2.15) leads to the following equation for α̂(0):

˙̂α(0) + w(0)α̂(0)′ = 0, (4.9)

for which a solution consistent with the boundary values is simply α̂(0) ≡ α̂e. This
being the case, (4.5)–(4.7) can be combined to form just two equations,

(α̂e + 1)(u̇(0) + w(0)u(0)′ + u(0)2 − v(0)2) = u(0)′′, (4.10)

(α̂e + 1)(v̇(0) + w(0)v(0)′ + 2u(0)v(0)) = v(0)′′. (4.11)

These are the equations of the classical Kármán problem provided we make the
simple transformations

ζ =

(
1

α̂e + 1

)1/2

ζ̂, w(0) =

(
1

α̂e + 1

)1/2

ŵ(0). (4.12)

Thus, we see that for non-dimensional times t� 1, the steady-state Kármán solution
is established, although this leaves aside the question of what happens to the particle
concentration, α̂, and whether or not the expansion (4.4) is valid for all ζ and t. There
is ample numerical evidence that the expansion is indeed uniformly valid in space
and time for the horizontal velocity components, u and v. The development of the
particle concentration is somewhat more interesting, and depends crucially on the
presence or absence of significant gravitational force. It appears that modifications
to the above results arise in some cases near the boundary, where (4.4) may fail. The
nature of these near-wall structures seems to depend principally on the sign and the
magnitude of K.
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4.1.1. Near-wall structures for K≈ 0

Returning to (2.15), substitution of the expansions for u and w leads to the following
equation:

˙̂α+ w(0)α̂′ +
2γ

β
α̂ = 0. (4.13)

Clearly, for large β, the conclusion is that to leading order in the expansion (4.3),
α is a constant, as we noted before. However, near the wall, continuity leads to
w(0) ∼ −sζ2, where s = − 1

2
w(0)′′ |ζ=0 (which may be calculated from the appropriate

Kármán solution), and so for ζ small, equation (4.13) becomes

α̂t − sζ2α̂ζ +
2γ

β
α̂ = 0; (4.14)

then the inner region implied by (4.14) can be rescaled by writing

ζ =

(
2γ

βs

)
Z, t =

β

2γ
τ, (4.15)

in which this inner equation for α becomes

α̂τ − Z2α̂Z + α̂ = 0. (4.16)

The solution that satisfies the initial condition α = αe and the boundary condition
α = αe at the edge of the layer is then

α̂ =

{
α̂ee
−τ, Zτ < 1,

α̂ee
−1/Z , Zτ > 1.

(4.17)

Therefore, for long times, there is a vanishingly small zone of width τ−1 in Z in which
α continues to decay in time, and a zone that constitutes the majority of the wall
layer in which α is steady. Hence, for β → ∞, there is no regular steady state at all,
but rather an essential singularity develops, the solution for α decreasing to zero more
rapidly than any power or exponential of Z . The computations presented in § 3 verify
that the value of α continues to change very slowly at the wall, as predicted here.

Before proceeding, we return briefly to the question of what restrictions need to be
placed on the relative magnitudes of the parameters in the problem. As anticipated
above, (4.1) leads to more severe limitations than either (2.4) or (4.2). In the analysis
immediately above, we determined that there is a thin layer of width γ/β within the
Kármán boundary layer. Consequently substitution into (4.1) gives a requirement that
can be combined with (4.2) to give the restricted parameter range of the results,

γ2 � β � γ � 1. (4.18)

One might note an inconsistency here, since these are notionally heavy particles, and
we have neglected gravitational effects. Though a gravitational influence will always
exist for heavy particles, provided it only has an effect over a time that is long
compared to the timescale under consideration, it can be ignored. This requirement is

g√
νΩ3

� 1. (4.19)

It is also important to note that (4.17) indicates that, as time increases, our continuum
model for the particle distribution must ultimately fail, specifically when the thickness
of this diminishing thin layer becomes comparable to the particle dimensions. As
an aside, we note that it is because of the subtleties raised above that consistent
numerical solutions of flows of this type have proved so difficult to obtain in the past.
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4.2. Changes in the large-β structure for K 6= 0

On including gravitational effects, depending on the relative ordering of β and K,
the expansion (4.4) may remain valid for large |K|, but before addressing this issue,
we turn to the vertical momentum equation for the particle phase, which will now be
modified by the presence of the gravitational term,

ẇ(0) + w(0)w(0)′ = (w(1) − w(1)
p )−K, (4.20)

where we have retained the expansion (4.4). We discuss the question of appropriate
wall conditions for arbitrary β in Appendix A, §A.2. Equation (4.20) appears to
suggest that w(1)

p = −K at ζ = 0; however, this is incorrect for K > 0, since
the expansions (4.4) fail near the wall. Hence, we simply reiterate the results from
Appendix A, §A.2 namely that for K < 0, wp(ζ = 0) can be arbitrarily specified
(including setting wp = 0 at ζ = 0), whilst for K > 0, wp(ζ = 0) must be determined
as part of the solution, although from our β � 1 analysis, (A 16) tells us that

wp = −γK
β

on ζ = 0. (4.21)

This conclusion can be readily understood in both physical and mathematical
terms. Physically, for a gravitational field directed towards the boundary (K > 0),
particles sediment out of solution and ‘collide’ with the wall. Particles that descend
from sufficiently large distances (i.e. many particle diameters) from the wall, will hit
the wall at a ‘terminal velocity’, so that wp clearly cannot be arbitrarily imposed.
In line with our comments in the previous section, mathematically, for K > 0 (and
hence wp < 0), all characteristics leaving t = 0 in the (ζ, t)-plane intersect ζ = 0 at a
finite time; that is to say, (−ζ) is a time-like direction.

Nevertheless, the behaviour of the solution to (2.16) is not immediately obvious for
K = O(1), and so we turn now to a simpler case – that for very large |K|, which (as
we have noted) can be appropriate to a laboratory setting.

4.3. Large-|K| solutions

If the influence of gravity is sufficiently large, be it negative or positive (i.e. directed
away from or towards the boundary), then in the vertical momentum equation,
(2.16), the coupling term βw/γ can be neglected to first order. (Here we continue to
assume that β is large, but not ‘too’ large compared withK; this requirement will be
quantified shortly). In this case, (2.16) becomes

ẇp + wpw
′
p +

β

γ
wp = −K. (4.22)

This equation can be solved exactly by the method of characteristics. Along a
characteristic,

wp = −γK
β

+ C1e
−βt/γ (4.23)

on

ζ + C2 = −γK
β
t− γC1

β
e−βt/γ. (4.24)

The constants C1 and C2 are determined by application of particular boundary and/or
initial conditions. Below, we explore the two sub-cases, K� −1 and K� 1.
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4.3.1. K� −1: Gravity acting away from the boundary

The (wp, α) solutions
Suppose that the initial and boundary conditions are as given in § 2.3, namely

wp = −γK
β

at t = 0 for all ζ; wp = 0 at ζ = 0 for all t. (4.25)

The characteristic map from (4.23) and (4.24) indicates that there is an expansion
wave emanating from ζ = t = 0 in the (ζ, t plane). Let that wave occupy the region
in the plane between ζd+(t) and ζd−(t). For ζ > ζd+, C1 in (4.23) is taken to be zero to
satisfy the initial condition in (4.25). In that case, (4.24) shows the characteristics in
that zone to be given by ζ+ γKt/β = const. The boundary of this zone is then given
by ζd+ = −γKt/β. Thus, we have

wp = −γK
β

for ζ > ζd+ = −γK
β
t. (4.26)

In the region determined by the boundary condition in (4.25), ζ < ζd−, and in this
region, (4.23) and (4.25) indicate that C1 = (γK/β) exp(βto/γ), where to > 0 on ζ = 0.
From (4.24), the characteristics in this region are given by

ζ +
γK
β
t+

γ2K
β2

(eβ(to−t)/γ − 1) =
γK
β
to. (4.27)

Setting to = 0 gives the delimiter of this region,

ζd− = −γK
β
t− γ2K

β2
(e−βt/γ − 1). (4.28)

Then, eliminating to between C1 and (4.27) gives wp implicitly in this region as

ζ =
γ2K
β2

log

(
1 +

βwp

γK
)
− γ

β
wp for ζ < ζd−. (4.29)

Note that this solution is time-independent.
In the zone ζd− < ζ < ζd+, all characteristics must pass through ζ = t = 0, so by

(4.24),

C1 =
β

γ

ζ + (γK/β)t

e−βt/γ − 1
.

Substitution of this C1 into (4.23) gives wp in the expansion wave,

wp = −γK
β

+
β

γ

ζ + (γK/β)t

eβt/γ − 1
for ζd− < ζ < ζd+. (4.30)

Figure 10 shows this solution versus ζ for a particular time t. Two features should
be noted: (i) wp is continuous, but with discontinuous derivatives; (ii) for t � γ/β,
wp → −γK/β in ζ < ζd−, since ζd+ and ζd− are indistinguishable for such long times.

Examination of the equation for the particle concentration, α, in this layer, under
the large-|K| assumption, gives the approximate version of (2.15) as

α̇+ wpα
′ + w′pα = 0. (4.31)

Careful construction of the characteristic solution to this equation indicates that α in
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Figure 10. The asymptotic vertical particle velocity and volume fraction profiles for
K = −400, β = 20, γ = 2 at t = 0.2; as determined from (4.30).

this solution is discontinuous, and given by

α =

{
0, ζ < ζd+,

αe, ζ > ζd+.
(4.32)

From (4.28), for example, the layer width scales as γ2K/β2, and so according to
(4.1) the quantity K must be large enough to satisfy the requirement

|K|γ2 � β3/2. (4.33)

(The neglect of the w term in (4.22) gives a weaker restriction, γ|K| � β.) This
solution can be constructed for any value of wp at ζ = 0 and t = 0, with no
qualitative alteration in the results. The significant point is that the characteristics
have positive slope, so information is carried out, away from both ζ = 0 and t = 0.
It is also important to note that the layer continues to grow and hence there is no
steady-state solution: the wave between ζd+ and ζd− grows for all time. Though this
result is clearly valid regardless of the size of β, if β also large, as we have assumed
above, then the wp term in (2.16) is always larger than the ‘w’ term, so that its neglect
is justified.

The solutions given for wp and α evaluated above are independent, under (4.33),
of the horizontal components. The structure of the horizontal motion does, however,
depend on (wp, α), as we shall see below.

The horizontal velocity components

As the front illustrated in figure 11 propagates outward through the layer, the
horizontal velocity components are also varying in time in the two regions. Beneath
the front at ζd, since α ≡ 0, the standard no-particle equations of motion are valid.
Beyond the front, where α = αe, the full equations are required. Solutions in the two
regions are joined at ζd. The horizontal velocities evolve on an O(1) timescale, but
when t = O(1), the front is already at the edge of the boundary layer or beyond,
according to figure 11. However, near the edge of the layer, u, v, up and vp are all
exponentially small. Therefore, the remainder of the transient adjustment in the layer
occurs in a fashion that is identical to a case with no particles. (Obviously, for ζ < ζd
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values for up and vp may be found directly from

u̇p + wpu
′
p + u2

p − v2
p +

β

γ
up =

β

γ
u(ζ, t),

v̇p + wpv
′
p + 2upvp +

β

γ
vp =

β

γ
v(ζ, t), (4.34)

by inserting the (u, v) from the no-particle Kármán problem, but there is no real point
in writing down solutions, since there are no particles in that zone anyway.)

4.3.2. K� 1: Gravity acting towards the boundary

In this heavy-particle case, the characteristic directions have negative slope in the
(ζ, t)-plane, so all characteristics beginning on t = 0 intersect ζ = 0, with wp varying
along each according to (4.23). Hence, we have

wp = −γK
β

for all ζ, t. (4.35)

Note that if the initial condition, instead of a uniform gravitationally induced vertical
motion, is wp = 0, then the vertical velocity is time-dependent, and given by

wp =
γK
β

[e−βt/γ − 1] for all ζ, t. (4.36)

Then, equation (4.31) can also be easily solved, with the conclusion that

α = αe. (4.37)

This is consistent with (4.10) and (4.10), therefore we have found that at large and
positive K, the problem does indeed have a steady state, essentially like the no-
particle problem, with a uniform particle distribution across the layer, provided that
(4.33) is satisfied once again.

We also note that if instead there is an initial distribution for α given by, say, αi(ζ),
then the solution for that case at later times is

α = αi

(
ζ +
Kγt

β
+
γ2K
β2

[e−βt/γ − 1]

)
. (4.38)
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Unlike the situation in § 4.3.1 above, if β is large, then (4.33) implies that (up, vp)�
(u, v). Though the unsteady development is rather complicated, the steady state has the
leading-order form (where all quantities are functions of a scaled variable, ζ̄ = β1/2ζ),

u = − 1

3αeβ
[exp(−2

√
αeζ̄)− exp(−√αeζ̄)] + · · · , v = exp(−√αeζ̄) + · · · , (4.39a)

up =
β1/2

6α
3/2
e γ2K [2 exp(−√αeζ̄)− exp(−2

√
αeζ̄)] + · · · ,

vp =
β3/2

α
1/2
e γ2K exp(−√αeζ̄) + · · · , (4.39b)

w =
1

3α
3/2
e β3/2

[2 exp(−√αeζ̄)− exp(−2
√
αeζ̄)− 1] + · · · , (4.39c)

wp = −Kγ

β
− 1

3α2
eβ

3/2
+

1

6α2
eγ

2K [exp(−2
√
αeζ̄)− 4 exp(−√αeζ̄)] + · · · , (4.39d)

α = αe − β

3αeγ3K2
[4 exp(−√αeζ̄)− exp(−2

√
αeζ̄)] + · · · . (4.39e)

Consequently, as in theK = 0 case, the particle slip velocity components are deduced
as a part of the solution. Note too that the particle concentration at the surface is
somewhat less than αe, consistent with the trend found numerically, which is shown
in figure 7. It should be pointed out that the constant value of wp1 is determined in
order to render the wp series uniformly valid in ζ, that is, by making wp1 = w0(∞).

Other asymptotic values are possible, but less important. In Appendix B, how-
ever, we give details of the small-time development of the solution (for order-one
parameter values), and this is in agreement with a number of key features described
above.

5. Conclusions
We have considered the problem of spin-up of a fluid with a dilute suspension of

small particles both with and without the effects of gravity. Although we formally
only consider particles whose density relative to the fluid is large, the associated
influence of gravity can act either in the same direction as or in the opposite direction
to the Ekman axial flow induced by the rotation of the boundary. In terms of an
experimental configuration, these two cases correspond to the fluid being above or
below the rotating plane respectively, with gravity acting vertically.

The system of equations at the heart of our study may be considered somewhat
heuristic for order-one parameter values. Nevertheless, in the various parameter
regimes that have been the main focus of our attention (in particular (i) small particle
concentrations, (ii) particle size � boundary-layer thickness, (iii) particle density �
fluid density), we believe our model becomes formally correct. Mathematically the
system employed can model a rich blend of parabolic- and hyperbolic-type behaviours.

The problem has revealed a number of important subtleties, which go some way
in explaining the difficulties encountered in previous studies. Not the least of these
is the development (in the zero-gravity, large-β case) of an essential singularity in
the particle concentration distribution close to the wall (as described by equation
(4.17)). We can therefore observe that no steady, regular state exists to the problem,
but rather there is a zone in the immediate vicinity of the disk which continues to
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diminish in thickness as time increases (although ultimately those restrictions in our
model, in particular the smallness of the particles compared with all boundary-layer
scales, must be violated by this large-time behaviour).

The influence of gravity (which has not been directly addressed in the past in this
class of problem, as far as we are aware) has a profound influence on the solution
structure. The direction of the gravitational field, relative to the particle drag resulting
from the axial Ekman suction, is crucial here. When the gravitational acceleration
is directed towards the rotating boundary, particles are drawn in from the outer
extremes of the boundary layer, by both the Ekman suction and gravity, and will
ultimately collide with the bounding plane. Under these circumstances, our model
does not permit the enforcement of any particle boundary conditions on the disk (but
rather demands far-field boundary conditions). A more complete model involving
particle/wall interactions would have to take these effects into account, presumably
through the presence of a sublayer of sorts, utilizing the particle conditions as
calculated from the model proposed here; again, we do not regard this as a central
issue for the current paper. In this respect, experimental information of the particle–
wall mechanics will clearly prove useful.

When the local gravitational acceleration is directed away from the rotating bound-
ary, close to the wall, particles will be transported away, leading ultimately to a
particle-free zone, which may (as time increases) lead to a discontinuity in the particle
distribution function at some finite distance from the disk surface. This location may
be regarded as that point at which the drag forces associated with the Ekman suction
precisely balance with the gravity force acting on the particles; this is effectively an
equilibrium point in terms of the axial motion of the particle phase. The formation
of such a point, and indeed the development of an associated discontinuity in particle
distribution, is clearly seen in figure 9, and is discussed analytically for the short-time
behaviour in Appendix B. In this regime, it is mathematically consistent to impose
conditions on the behaviour of the particle phase at the wall, although as noted in
the text there is no physical interpretation of the particle velocities, if there are no
particles in this vicinity!

However, under these circumstances the imposition of particle velocity boundary
conditions at the wall seems to play absolutely no role in determining particle velocities
in regions where particles are actually present. This irrelevance of the surface (up, vp)
components is clearly shown in Appendix B, where we indicate that eigenfunctions
arise in the layer near the wall, whose amplitude depends on the wall boundary
conditions, but which vanish at the front per se. Furthermore this point can be
confirmed numerically, as illustrated by figure 12. In our opinion, this (physically)
meaningful result adds yet further credence to this choice of model equations. Again, a
full analysis that also directly models the issue of particle distribution behaviour at the
wall would be useful, but is not central to the theme of this work; our emphasis here
is deliberately focused on the core fluid mechanics arising from problems of this class.

The recent interesting paper by Slater & Young (2001) was brought to the attention
of the authors by a referee. This work treats problems in which the particle phase
is decoupled from the continuous-phase equation. One of the issues discussed is that
of ‘shadow zones’ (in which the particle concentration is zero) which the numerical
method treats through a ‘virtual’ particle distribution that satisfies prescribed con-
ditions at the solid boundaries. There is clearly some theoretical support for such
an approach in the more mathematical description here, where it is seen that the
prescribed wall conditions in fact have little influence except in the shadow zone for
a whole range of boundary conditions.
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Figure 12. The near-wall evolution of up(ζ, t) for K = −5, αeγ = 0.1, β/γ = 10 (this figure only
shows a sub-region of a much larger computational domain). The evolutions are shown with two
different wall boundary conditions: up(ζ = 0, t) = 0 (dashed lines) and up(ζ = 0, t) = 0.5 (solid lines).
The difference between the two is contained in a near-wall region as suggested by the analysis of
Appendix C. In this case, the axial particle velocity, wp(ζ, t), develops a zero at ζ ≈ 1.72.

Finally, Li & Ahmadi (1993) have given a useful generalization of the Saffman
force in a multi-dimensional flow, showing that it scales with

ρfa
2(νD)1/2Ωr,

where D is the scale of the deformation tensor in the flow. A referee has pointed
out, as is also noted in Osiptsov (1997), that such a force can be very important in
boundary-layer regions. Taking the ratio of this force to the Stokes drag gives

Saffman force

Stokes drag
= O

(
r/a

β3/2

)
.

Since this expression is the ratio of two large quantities, the Saffman force can indeed
be important. We postpone for future investigation the incorporation of the Saffman
force into the problem studied, although certainly for β sufficiently large, it can be
neglected.

We hope that this work will provide impetus for experimental comparisons to be
undertaken in the near future. The analysis and computations have indicated a number
of significant physical processes and phenomena that may be expected to occur in a
complex three-dimensional flow, and will provide a stringent test that is amenable to
experimental comparisons whilst also indicating which parameter regimes should be
examined in the laboratory. Equally, if the validity of our governing equations can be
confirmed for the present problem, then these equations (in particular those relating
to the particle phase) should be equally applicable to many other flows involving
dilute particle suspensions.

The authors wish to express their gratitude to Professor Peter Davies for a number
of useful discussions connected with the physical aspects of the problem. The support
of the EPSRC is gratefully acknowledged. Three referees have also made suggestions
that have significantly strengthened this paper.



404 M. R. Foster, P. W. Duck and R. E. Hewitt

Appendix A. Time evolution of surface conditions
A.1. Flow with negligible gravity: K≈ 0

Interestingly, since there are no diffusion terms in the particle-velocity equations,
these can be evaluated at the disk surface and their temporal evolution determined
independently of any behaviour elsewhere in the boundary layer.

Evaluating equations (2.12) and (2.13) at the surface, under the assumption of
impermeability (2.20), which as we shall see is sensible for K≈ 0, gives

u̇po + u2
po − v2

po +
β

γ
upo = 0, (A 1)

v̇po + 2upovpo +
β

γ
(vpo − 1) = 0. (A 2)

We come later to the situation at the surface forK 6= 0. The subscript ‘po’ indicates a
particle speed evaluated at the surface, ζ = 0. Note that these equations are decoupled
from the vertical momentum and particle concentration equations.

The particle continuity equation, (2.15), similarly takes the form

α̇o + αo(2upo + Λ) = 0, (A 3)

where, for brevity, we have written Λ = w′p(ζ = 0). Finally, (2.16) is an identity
evaluated at the surface, providedK is sufficiently small. Differentiating this equation
with respect to ζ, we obtain

ẇ′p + (w′p)
2 + wpw

′′
p =

β

γ
(w′ − w′p). (A 4)

Note from (2.14) that because of no slip, w′ ≡ 0 at the surface. Hence, (A 4) evaluated
at ζ = 0 becomes an evolution equation for Λ,

Λ̇+ Λ2 +
β

γ
Λ = 0. (A 5)

The solution is easily found:

Λ =
Λ(0)

[1 + (γ/β)Λ(0)] exp(βt/γ)− (γ/β)Λ(0)
, (A 6)

and so clearly a singularity may develop in a finite time if and only if

γ

β
Λ(0) < −1; (A 7)

the time for singularity formation is then

ts = − γ
β

log

(
1 +

β

γΛ(0)

)
. (A 8)

However, in the specific configurations to be studied here (which are also likely to
be the most realizable, experimentally) Λ(0) = 0, and so Λ ≡ 0 for all time. The
aforementioned finite-time singularities, the question of their realization through an
initial-value process and their physical interpretation are subjects for future investi-
gation.
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A.1.1. Long-time behaviour

Equations (A 1), (A 2) have fixed points, given by solution of the equations

u2
po − v2

po +
β

γ
upo = 0, 2upovpo +

β

γ
(vpo − 1) = 0. (A 9)

Combining gives the quartic equation

upo

(
upo +

β

γ

)(
1 +

2γ

β
upo

)2

= 1, (A 10)

and then

vpo =
1

1 + (2γ/β)upo
. (A 11)

The quartic (A 10) has two real solutions: one positive and one negative. Phase-plane
analysis of the equation pair (A 1), (A 2) shows that the positive root is a stable fixed
point, and the negative root is an unstable fixed point, so all initial conditions lead
eventually to the upo > 0 root.

Since we know that Λ → 0 for long time (assuming the absence of any finite-time
singularities), the corresponding behaviour of α0, from (A 3), is given by solution of

α̇o + 2upoαo = 0, (A 12)

and so

αo ∼ Ce−2upot as t→∞. (A 13)

A.2. Surface conditions for K 6= 0

The situation with respect to surface conditions is fundamentally different forK < 0
and K > 0. Inspection of (2.16) indicates that wp 6= 0 at ζ = 0 for K 6= 0. In fact,
a more careful examination suggests the following possible small-ζ behaviour if
wp(ζ = 0) is set to zero:

wp =
√−2Kζ − 2β

3γ
ζ + · · · . (A 14)

Obviously, for K = 0, the first term is absent, and therefore (A 14) is consistent with
the description provided in the preceding section.

For K < 0, wp may be zero at the surface. We shall see in subsequent sections,
however, that it is possible to specify wp (arbitrarily) at ζ = 0 for K < 0, in which
case the expansion

wp = A0(t) + ζA1(t) + · · · , K < 0, (A 15)

is the proper one, and substitution of this into into (2.16) gives

Ȧ0 +
β

γ
A0 + A0A1 = −K. (A 16)

Therefore, with A0 specified, A1 can be determined.
If K > 0, then clearly (A 14) fails, suggesting that in such a case A0 must be

non-zero so that (A 16) is appropriate for calculating A1. Thus we conclude that, for
K < 0, wp may be zero at the surface, or take a prescribed non-zero value; however,
for K > 0, wp must be non-zero at the surface. In fact, the value of wp at ζ = 0 in
this latter case cannot be specified arbitrarily, but rather is determined by conditions
off the wall.
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Appendix B. Short-time behaviour of the solution
It is helpful to examine the behaviour of the solutions for short times as this provides

some further guidance for the development of appropriate numerical techniques, and
gives still further insight into the physics. Here we again assume that the initial state
is that of uniform particle settling/rising (wp = −γK/β), and uniform volume ratio
(α = αe), with no initial fluid motion.

B.1. K≈ 0

In the absence of a significant gravitational body force, the system (2.10)–(2.16)
possesses a small-time expansion of the form

u = u0(η)t+ · · ·, v = v0(η) + · · ·, w = w0(η)t3/2 + · · ·, (B 1a)

up = up0(η)t2 + · · ·, vp = vp0(η)t+ · · ·, wp = wp0(η)t5/2 + · · ·. (B 1b)

Here, η = O(1) represents the usual scaled coordinate ζ = ηt1/2, and α = αe + · · ·,
where αe is the initial particle concentration, which in line with our assumed initial
conditions must be uniform.

The leading-order equations for the fluid phase are unchanged from those found
as t→ 0 in the single-phase Kármán problem, namely

u0 − η

2
u′0 − v2

0 = u′′0 , −η2 v
′
0 = v′′0 , 2u0 + w′0 = 0. (B 2a–c)

The solution for the particle phase is easily determined subsequent to evaluation of
u0, v0 and w0, yielding

up0(η) = −2βη4

γ

∫ η

∞
u0(s)

s5
ds, (B 3a)

vp0(η) = −2βη2

γ

∫ η

∞
v0(s)

s3
ds, (B 3b)

wp0(η) = −2βη5

γ

∫ η

∞
w0(s)

s6
ds. (B 3c)

There is a slight additional complication in the small-time behaviour of the two-
phase problem; since the fluid phase satisfies no-slip conditions at the disk, this drives
an azimuthal particle motion that is important to leading order in (2.12). This results
in a passive inner region defined by ζ = ξt3/2, within which a balance between u̇p and
v2
p can be achieved. For completeness, we note that in this inner layer adjacent to the

disk, the particle-phase velocity components are

u = ūp0(ξ)t3 + · · ·, v = v̄p0(ξ)t+ · · ·, w = w̄p0(ξ)t9/2 + · · ·. (B 4)

B.2. K < 0

For K < 0, the boundary layer again has a double structure at short times, and
expansions (B 1a), (B 1b) remain correct for the horizontal components, except very
near the wall. However in (B 1b) the expansion for the vertical component, wp, must
be replaced by

wp = −γK
β

+ wp0(η) t5/2 + · · · , (B 5)

although wp0 is still given by (B 3c).
For the near-wall particle-velocity components described below, it is important to

note that the analysis of the wp equation in § 4.3.1 for large β and K is valid here,
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since at short times, the w term in the wp equation is of higher order, just as in that
case, but for different reasons. Here, neglect of this term requires that

t�
(
−γK

β

)2/3

. (B 6)

From (4.26)–(4.30), the vertical velocity at short times is given by these large-|K|
results. Hence,

wp =


(−2Kζ)1/2, ζ < ζd−,
ζ/t− 1

2
Kt, ζd− < ζ < ζd+,

−γK/β, ζ > ζd+.

(B 7)

The leading and trailing edges of the expansion wave are given for short times by

ζd+ = −γKt

β
, ζd− ≈ − 1

2
Kt2. (B 8)

Note that this result is consistent with that of (B 5). The results (B 8) follow from
approximating (4.28) and (4.26) for short times. Substitution of this form for wp
and the horizontal fluid component expansion into the equations for the horizontal
particle-velocity components indicates that the expansions (B 1b) fail for ζ = O(t). An
asymptotic expansion in this near-wall region is

up ∼ 2β

3γ
u′0(0)

[
ζ

t
+

2

5

(
γK
β
− β

γ
ζ

)]
t5/2 + O(t7/2, ζ2), (B 9)

vp ∼ β

γ
[t+ 2 v′0(0) t1/2ζ] + O(t2, ζ2) for ζ > ζd+. (B 10)

This solution in this region, valid for ζ = O(t), is a series of terms in the form ζmtn.
Notice that taking ζ → ∞ in this expansion, then rewriting in terms of η, confirms
the matching with the base of the η layer, where the solutions are given by (B 1b).

At the upper edge of the expansion wave, the particle-velocity components take
the form

up = − 2
5
Ku′0(0)t5/2 + O(t3),

vp =
β

γ
t+ O(t3/2) at ζ = ζd+.

 (B 11)

The solutions (B 9) and (B 10) are above the leading-edge of the front; again, up
and vp are physically meaningless for ζ < ζd+, where α ≡ 0. On the other hand, in the
numerical solutions, we must compute both up and vp in the region ζ < ζd+. With a
view to exploring that issue, we insert result (B 7) for ζ < ζd− into the equations for
up and vp, and the solutions below the trailing edge of the wave are

up ∼ −βK
3γ

u′0(0)
[
φ− 4

5

√
φ+ 8

35

]
t7/2 + A1(

√
φ− 1)7/2t7/2,

vp ∼ β

γ
t+ A2(

√
φ− 1) for ζ < ζd−,

 (B 12)

where φ ≡ −2ζ/Kt2, so that φ = 1 at ζ = ζd−. The quantities A1 and A2 are arbitrary
constants, and are clearly determined by whatever boundary conditions are given
for up and vp at the wall. Nevertheless, these eigenfunctions vanish at φ = 1. The
importance of this result is that any choice for wall values for up and vp has no
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effect on the solution where the particle velocities have meaning, that is, in the region
ζ > ζd. Similar solutions can be constructed in ζd− < ζ < ζd+, and that process gives

up ∼ −βK
γ
u′0(0)

[
1

7
+
φ− 1

5

]
,

vp ∼ β

γ
t for ζd− < ζ < ζd+.

 (B 13)

This solution connects to (B 12) at φ = 1 below, and to (B 11) for φ ∼ 2γ/(βt).
Eigenfunctions also arise in this region, but must be zero in order for the solution to
connect to (B 11).

As we have noted throughout the paper, in the case K < 0 the characteristics are
directed away from the plane at ζ = 0 and one is at liberty to specify the boundary
conditions at this point for the particle phase. However, in the computations, such
as those illustrated in figure 9 the effect of the wall boundary conditions on the
particle phase is localized, and the global features of the flow remain for any choice
of such conditions. This aspect was confirmed through numerical experimentation by
performing computations analogous to those presented in figure 9 with a variety of
boundary conditions imposed on the particulate phase at ζ = 0.

B.3. K > 0

The structure of the small-time solution in this case proceeds as above, but with a
marked difference: the absence of a front, a fact that is apparent from the discussion
in § 4.3.2 (and also because in this case δ, as defined above, will be negative). In
fact, from (4.35) we recall that wp is given uniformly in space and time by (−γK/β).
Therefore, equations (B 9) and (B 10) are in this case too the leading-order terms in
the time series, and are valid down to the wall. Thus, we see that the particle slip
begins at small time; evaluating (B 9) and (B 10) at the wall gives

up = 4
15
u′0(0)t5/2 + O(t7/2),

vp =
β

γ
t+ O(t2) at ζ = 0.
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